38553 measured reflections

 $R_{\rm int} = 0.047$

3450 independent reflections

2171 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

r-2,*c*-6-Bis(4-bromophenyl)-*t*-3,*t*-5dimethyltetrahydropyran-4-one

P. Parthiban,^a S. Umamatheswari,^a Adinarayana Doddi,^b V. Ramkumar^b and S. Kabilan^a*

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and ^bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India

Correspondence e-mail: prskabilan@rediffmail.com

Received 22 September 2007; accepted 15 October 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.094; data-to-parameter ratio = 16.4.

In the title compound, $C_{19}H_{18}Br_2O_2$, the tetrahydropyran ring has a chair conformation with an equatorial disposition of all the methyl and *p*-bromophenyl groups. The structure is stabilized by intermolecular $C-H\cdots O$, $C-H\cdots \pi$ and $Br\cdots Br$ interactions $[Br\cdots Br = 3.4756 (9) \text{ Å}]$, forming a zigzag layer arrangement.

Related literature

For related literature, see: Baliah & Mangalam (1978); Belakhov *et al.* (2002); Eliel (1962); Japp & Maitland (1904); Jose Kavitha *et al.* (2003); Krishnamoorthy *et al.* (2003); Kumar *et al.* (1999); Noller (1966); Ray *et al.* (1998); Usman *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{18}Br_2O_2\\ M_r=438.15\\ Orthorhombic, Pbca\\ a=15.146 \ (3) \ \text{\AA}\\ b=9.1460 \ (18) \ \text{\AA}\\ c=26.180 \ (5) \ \text{\AA} \end{array}$

 $V = 3626.6 (12) \text{ Å}^{3}$ Z = 8 Mo K\alpha radiation \mu = 4.48 mm⁻¹ T = 297 (2) K 0.22 \times 0.20 \times 0.19 mm

Data collection

```
Bruker Kappa-APEXII CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
T_{min} = 0.439, T_{max} = 0.483
(expected range = 0.388–0.427)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 210 parameters $wR(F^2) = 0.094$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.62$ e Å $^{-3}$ 3450 reflections $\Delta \rho_{min} = -0.41$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C12-C17 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C4-H4\cdots Cg^{i} \\ C14-H14\cdots O1^{ii} \end{array}$	0.98 0.93	2.77 2.68	3.687 3.403 (5)	156 136
Symmetry codes: (i) -	$x + 2, y + \frac{1}{2}, -z$	$x + \frac{3}{2}$; (ii) $x + \frac{1}{2}$,	$y, -z + \frac{3}{2}$	

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection. PP acknowledges the IIT Madras, Chennai, for financial assistance.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2166).

References

- Baliah, V. & Mangalam, G. (1978). Indian J. Chem. Sect. B, 16, 213–215.
 Belakhov, V., Botoshansky, M. & Baasov, T. (2002). Acta Cryst. C58, m450– m452.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eliel, E. L. (1962). Stereochemistry of Carbon Compounds, p. 28. New Delhi: McGraw-Hill.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Japp, F. R. & Maitland, W. (1904). J. Chem. Soc. 85, 1473-1477.
- Jose Kavitha, S., Sarangarajan, T. R., Thanikasalam, K., Panchanatheswaran, K. & Jeyaraman, R. (2003). Acta Cryst. E59, 0463–0465.
- Krishnamoorthy, B. S., Sarangarajan, T. R., Thanikasalam, K., Panchanatheswaran, K. & Jeyaraman, R. (2003). Acta Cryst. E59, 0461–0462.
- Kumar, R., Parmar, V. S. & Errington, W. (1999). Acta Cryst. C55, 561–563. Noller, C. R. (1966). A Textbook of Organic Chemistry, 3rd ed, pp. 521–522.
- London: W. B. Saunders. Ray, S., Sarkhel, S., Maulik, P. R., Lobkovsky, E. & Clardy, J. (1998). Acta
- *Cryst.* **C54**, 134–136.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002). Acta Cryst. C58, 057–058.

Acta Cryst. (2007). E63, o4373 [doi:10.1107/S1600536807050660]

r-2,c-6-Bis(4-bromophenyl)-t-3,t-5-dimethyltetrahydropyran-4-one

P. Parthiban, S. Umamatheswari, A. Doddi, V. Ramkumar and S. Kabilan

Comment

Pyran-4-one derivatives are very important, naturally available and biologically active six-membered heterocyclic compounds (Noller, 1966). Japp and Maitland were the first to report the synthesis of several substituted tetrahydropyran derivatives (Japp & Maitland, 1904). While reviewing the literature, depending upon the number and nature of the substituents and the level of unsaturation, different conformations are reported for the six-membered heterocyclic ring, namely, sofa (Ray *et al.*, 1998), planar (Kumar *et al.*, 1999), chair (Belakhov *et al.*, 2002; Krishnamoorthy *et al.*, 2003; Jose Kavitha *et al.*, 2003) or twist boat (Usman *et al.*, 2002). Moreover, the synthesized compound contains two pairs of chiral carbons with identical groups on each. According to Eliel, there can be four racemic and two *meso* forms (Eliel, 1962).

In the title compound $C_{19}H_{18}Br_2O_2$, as shown in Fig. 1, the tetrahydropyran ring adopts a chair conformation. Both the methyl groups and *p*-Br phenyl rings occupy equatorial positions. Similar kinds of compounds with *p*-Cl or *p*-CH₃ substituents reported earlier exist in the chair conformation with equatorial orientations of all the phenyl and methyl groups. The absolute configuration of the chiral atoms C1, C2, C4 and C5 are *S*, *R*, *S* and *R*, respectively.

The crystal structure is stabilized by intermolecular C—H···O, C—H··· π and Br···Br interactions. These contacts facilitate the formation of a zigzag network extendend over the *ac* plane. In the crystal structure the adjacent layers are linked through C—H··· π interactions, *viz*. C4—H4···*Cg*ⁱ with H4···*Cg*ⁱ = 2.766 Å, C4···*Cg*ⁱ = 3.687 Å and C4—H4···*Cg*ⁱ = 156°, where *Cg*ⁱ denotes the centroid of the C12–C17 aryl ring of the molecule (symmetry code: i = 2 - x, 1/2 + y, 3/2 - z).

The molecules are also held together by C—H···O interactions between C14 and O1ⁱⁱ of 3.403 (5) Å, C14—H14···O1ⁱⁱ = 136°, symmetry code: ii = 1/2 + x, y, 3/2 - z. A short contact is also seen between Br1···Br2ⁱⁱⁱ (3.4756 (9) Å, symmetry code: iii = 5/2 - x, -y, -1/2 + z).

Experimental

The title compound was obtained by the condensation of pentan-3-one and *p*-bromo benzaldehyde in a 1:2 molar ratio in ethanol by adopting the literature procedure for similar types of compounds (Baliah & Mangalam, 1978). Diffraction quality crystals were obtained by recrystallization of the obtained compound in ethanol.

Refinement

All the hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methyl C—H = 0.96 Å. The displacement parameters were set for phenyl and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$ and for methyl H atoms at $1.5U_{eq}(C)$.

Fig. 1. ORTEP of the molecule with atoms represented as 50% probability ellipsoids.

r-2,c-6-Bis(4-bromophenyl)-t-3,t-5-dimethyltetrahydropyran-4-one

Crystal data	
$C_{19}H_{18}Br_2O_2$	$F_{000} = 1744$
$M_r = 438.15$	$D_{\rm x} = 1.605 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 5214 reflections
a = 15.146 (3) Å	$\theta = 2.1 - 26.0^{\circ}$
b = 9.1460 (18) Å	$\mu = 4.48 \text{ mm}^{-1}$
c = 26.180(5) Å	T = 297 (2) K
$V = 3626.6 (12) \text{ Å}^3$	Rectangular, colourless
<i>Z</i> = 8	$0.22 \times 0.20 \times 0.19 \text{ mm}$

Data collection

Bruker Kappa-APEXII CCD area-detector diffractometer	3450 independent reflections
Radiation source: fine-focus sealed tube	2171 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$

T = 297(2) K	$\theta_{max} = 26.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$h = -17 \rightarrow 17$
$T_{\min} = 0.439, T_{\max} = 0.483$	$k = -10 \rightarrow 10$
38553 measured reflections	$l = -32 \rightarrow 29$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0317P)^2 + 4.4775P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
3450 reflections	$\Delta \rho_{max} = 0.62 \text{ e} \text{ Å}^{-3}$
210 parameters	$\Delta \rho_{min} = -0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	1.23772 (3)	0.02246 (7)	0.981200 (17)	0.0872 (2)
Br2	1.08186 (3)	0.16048 (6)	0.532667 (17)	0.08003 (19)
C1	0.9071 (2)	0.1921 (4)	0.74443 (12)	0.0387 (8)
H1	0.8595	0.1200	0.7473	0.046*
C2	0.8682 (2)	0.3470 (4)	0.75042 (13)	0.0460 (9)
H2	0.9174	0.4165	0.7488	0.055*
C3	0.8285 (2)	0.3578 (4)	0.80309 (14)	0.0484 (9)
C4	0.8888 (2)	0.3119 (4)	0.84640 (13)	0.0459 (9)
H4	0.9356	0.3856	0.8489	0.055*
C5	0.9333 (2)	0.1659 (4)	0.83367 (12)	0.0402 (8)
H5	0.8891	0.0879	0.8357	0.048*
C6	1.0073 (2)	0.1311 (4)	0.86997 (12)	0.0407 (8)

C7	0.9971 (3)	0.0304 (4)	0.90867 (13)	0.0518 (10)
H7	0.9431	-0.0168	0.9125	0.062*
C8	1.0649 (3)	-0.0019 (4)	0.94173 (14)	0.0592 (11)
H8	1.0572	-0.0709	0.9675	0.071*
C9	1.1438 (3)	0.0689 (5)	0.93619 (13)	0.0532 (10)
C10	1.1559 (2)	0.1721 (4)	0.89904 (14)	0.0550 (10)
H10	1.2094	0.2212	0.8962	0.066*
C11	1.0871 (2)	0.2026 (4)	0.86575 (14)	0.0496 (9)
H11	1.0950	0.2722	0.8402	0.059*
C12	0.9531 (2)	0.1727 (4)	0.69389 (12)	0.0384 (8)
C13	1.0388 (2)	0.2201 (4)	0.68676 (14)	0.0463 (9)
H13	1.0703	0.2579	0.7143	0.056*
C14	1.0784 (2)	0.2121 (4)	0.63948 (15)	0.0512 (10)
H14	1.1362	0.2437	0.6350	0.061*
C15	1.0313 (3)	0.1570 (4)	0.59899 (14)	0.0502 (10)
C16	0.9471 (3)	0.1062 (4)	0.60490 (14)	0.0509 (10)
H16	0.9163	0.0677	0.5773	0.061*
C17	0.9086 (2)	0.1129 (4)	0.65277 (13)	0.0458 (9)
H17	0.8518	0.0766	0.6574	0.055*
C18	0.8418 (3)	0.3087 (5)	0.89754 (15)	0.0745 (13)
H18A	0.8107	0.3990	0.9025	0.112*
H18B	0.8843	0.2960	0.9244	0.112*
H18C	0.8006	0.2289	0.8981	0.112*
C19	0.8032 (3)	0.3881 (5)	0.70866 (16)	0.0738 (13)
H19A	0.7555	0.3189	0.7082	0.111*
H19B	0.8327	0.3873	0.6762	0.111*
H19C	0.7802	0.4841	0.7152	0.111*
01	0.75334 (19)	0.3972 (4)	0.81016 (11)	0.0765 (9)
02	0.97028 (14)	0.1662 (2)	0.78362 (8)	0.0409 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0670 (3)	0.1321 (5)	0.0623 (3)	0.0304 (3)	-0.0187 (2)	0.0014 (3)
Br2	0.0892 (4)	0.0904 (4)	0.0605 (3)	0.0113 (3)	0.0319 (2)	0.0005 (2)
C1	0.0311 (19)	0.043 (2)	0.0426 (19)	-0.0031 (16)	-0.0013 (15)	0.0015 (16)
C2	0.036 (2)	0.047 (2)	0.055 (2)	0.0024 (17)	0.0000 (17)	0.0033 (19)
C3	0.034 (2)	0.049 (2)	0.062 (2)	0.0027 (18)	0.0028 (17)	-0.0037 (18)
C4	0.039 (2)	0.050 (2)	0.050 (2)	0.0006 (18)	0.0024 (16)	-0.0097 (17)
C5	0.036 (2)	0.044 (2)	0.0406 (19)	-0.0080 (17)	0.0015 (15)	0.0008 (16)
C6	0.045 (2)	0.039 (2)	0.0380 (18)	-0.0010 (17)	-0.0004 (16)	-0.0036 (17)
C7	0.054 (2)	0.054 (2)	0.048 (2)	-0.013 (2)	-0.0010 (18)	0.0052 (19)
C8	0.069 (3)	0.066 (3)	0.043 (2)	0.004 (2)	-0.001 (2)	0.0091 (19)
C9	0.054 (3)	0.068 (3)	0.037 (2)	0.015 (2)	-0.0064 (18)	-0.008 (2)
C10	0.036 (2)	0.068 (3)	0.062 (2)	-0.001 (2)	-0.0012 (18)	-0.001 (2)
C11	0.043 (2)	0.055 (2)	0.050 (2)	-0.003 (2)	0.0003 (18)	0.0107 (18)
C12	0.0322 (19)	0.038 (2)	0.0447 (19)	0.0023 (16)	-0.0010 (15)	0.0031 (16)
C13	0.035 (2)	0.054 (2)	0.050 (2)	-0.0040 (18)	-0.0035 (17)	0.0031 (18)

C14	0.022(2)	0.058 (2)	0.063(2)		-0.0003(10)	0.0070(10)	0.007(2)
C14	0.033(2)	0.058(2)	0.003(3) 0.051(2)		0.0003(19)	0.0070(13)	0.007(2)
C16	0.049(2)	0.050(2)	0.031(2)		0.011(2)	-0.0053(18)	-0.0055(17)
C10 C17	0.034(3)	0.053(2)	0.040(2) 0.048(2)		-0.005(2)	0.0000 (16)	-0.0035(18)
C18	0.050(2)	0.035(2) 0.107(4)	0.040(2)		0.019 (3)	0.0000(10)	-0.011(2)
C19	0.061(3)	0.107(4) 0.087(3)	0.055(2)		0.019(3)	-0.006(2)	0.011(2)
01	0.003(3)	0.007(3)	0.000(3))	0.032(3)	0.000(2)	0.000(2)
02	0.0427(17)	0.108(3)	0.0703(12))	0.0243(17)	-0.0021(10)	-0.0019(10)
02	0.0554 (15)	0.0409 (15)	0.0405 (12))	0.0071 (11)	0.0021 (10)) 0.0000 (11)
Geometric param	neters (Å, °)						
Br1—C9		1.895 (4)	С	С8—Н8		0	.9300
Br2—C15		1.898 (3)	С	C9—C10)	1	.368 (5)
C1—O2		1.422 (4)	С	C10—C1	1	1	.386 (5)
C1—C12		1.505 (5)	С	С10—Н1	10	0	0.9300
C1—C2		1.543 (5)	С	С11—Н1	11	0	.9300
C1—H1		0.9800	С	C12—C1	13	1	.382 (5)
C2—C3		1.508 (5)	С	C12—C1	17	1	.382 (5)
C2—C19		1.519 (5)	С	C13—C1	4	1	.377 (5)
С2—Н2		0.9800	С	С13—Н	13	0	.9300
C3—O1		1.208 (4)	С	C14—C1	15	1	.373 (5)
C3—C4		1.515 (5)	С	С14—Н1	14	0	.9300
C4—C18		1.516 (5)	С	C15—C1	16	1	.366 (5)
C4—C5		1.533 (5)	С	C16—C1	17	1	.384 (5)
C4—H4		0.9800	С	С16—Н1	16	0	.9300
С5—О2		1.425 (4)	С	С17—Н	17	0	.9300
C5—C6		1.503 (5)	С	С18—Н1	18A	0	.9600
С5—Н5		0.9800	С	С18—Н1	18B	0	.9600
С6—С7		1.378 (5)	С	С18—Н1	18C	0	.9600
C6—C11		1.379 (5)	С	С19—Н1	19A	0	.9600
С7—С8		1.375 (5)	С	С19—Н1	19B	0	.9600
С7—Н7		0.9300	С	С19—Н1	19C	0	.9600
С8—С9		1.368 (6)					
O2—C1—C12		107.7 (3)	С	C8—C9-	—Br1	1	18.9 (3)
O2—C1—C2		109.7 (3)	С	C9—C10)—C11	1	19.1 (4)
C12—C1—C2		112.0 (3)	С	C9—C10)—H10	1	20.5
O2—C1—H1		109.2	С	С11—С1	0—H10	1	20.5
С12—С1—Н1		109.2	С	C6—C11	C10	1	20.8 (3)
С2—С1—Н1		109.2	С	C6—C11	—H11	1	19.6
C3—C2—C19		112.6 (3)	С	C10—C1	1—H11	1	19.6
C3—C2—C1		107.8 (3)	С	C13—C1	2—C17	1	18.5 (3)
C19—C2—C1		113.7 (3)	С	C13—C1	2—C1	1	21.1 (3)
С3—С2—Н2		107.5	С	C17—C1	2—C1	1	20.4 (3)
С19—С2—Н2		107.5	С	C14—C1	13—C12	1	20.9 (3)
С1—С2—Н2		107.5	C	C14—C1	I3—H13	1	19.5
O1—C3—C2		122.4 (3)	С	С12—С1	I3—H13	1	19.5
O1—C3—C4		122.4 (3)	C	C15—C1	14—C13	1	19.2 (3)
C2—C3—C4		115.2 (3)	С	C15—C1	I4—H14	1	20.4
C3—C4—C18		112.6 (3)	С	C13—C1	I4—H14	1	20.4

C3—C4—C5	110.1 (3)	C16—C15—C14	121.5 (3)
C18—C4—C5	112.4 (3)	C16—C15—Br2	119.1 (3)
C3—C4—H4	107.1	C14—C15—Br2	119.4 (3)
C18—C4—H4	107.1	C15—C16—C17	118.7 (3)
С5—С4—Н4	107.1	C15—C16—H16	120.6
O2—C5—C6	106.8 (3)	C17—C16—H16	120.6
O2—C5—C4	111.8 (3)	C12—C17—C16	121.2 (3)
C6—C5—C4	112.0 (3)	C12—C17—H17	119.4
O2—C5—H5	108.7	С16—С17—Н17	119.4
С6—С5—Н5	108.7	C4—C18—H18A	109.5
С4—С5—Н5	108.7	C4—C18—H18B	109.5
C7—C6—C11	118.3 (3)	H18A—C18—H18B	109.5
C7—C6—C5	121.5 (3)	C4—C18—H18C	109.5
C11—C6—C5	120.2 (3)	H18A—C18—H18C	109.5
C8—C7—C6	121.5 (4)	H18B—C18—H18C	109.5
С8—С7—Н7	119.3	С2—С19—Н19А	109.5
С6—С7—Н7	119.3	C2-C19-H19B	109.5
C9—C8—C7	119.0 (4)	H19A—C19—H19B	109.5
С9—С8—Н8	120.5	С2—С19—Н19С	109.5
С7—С8—Н8	120.5	H19A—C19—H19C	109.5
C10—C9—C8	121.3 (3)	H19B—C19—H19C	109.5
C10—C9—Br1	119.8 (3)	C1—O2—C5	113.6 (2)
O2—C1—C2—C3	-57.3 (3)	C7—C8—C9—Br1	-179.2 (3)
C12—C1—C2—C3	-176.8 (3)	C8—C9—C10—C11	-1.5 (6)
O2—C1—C2—C19	177.1 (3)	Br1—C9—C10—C11	178.7 (3)
C12—C1—C2—C19	57.7 (4)	C7—C6—C11—C10	1.1 (5)
C19—C2—C3—O1	-0.9 (5)	C5-C6-C11-C10	179.8 (3)
C1—C2—C3—O1	-127.2 (4)	C9—C10—C11—C6	0.5 (6)
C19—C2—C3—C4	177.5 (3)	O2-C1-C12-C13	-38.4 (4)
C1—C2—C3—C4	51.3 (4)	C2-C1-C12-C13	82.2 (4)
O1—C3—C4—C18	5.0 (5)	O2-C1-C12-C17	144.6 (3)
C2—C3—C4—C18	-173.4 (3)	C2-C1-C12-C17	-94.8 (4)
O1—C3—C4—C5	131.3 (4)	C17—C12—C13—C14	1.9 (5)
C2—C3—C4—C5	-47.1 (4)	C1-C12-C13-C14	-175.1 (3)
C3—C4—C5—O2	48.3 (4)	C12-C13-C14-C15	0.4 (6)
C18—C4—C5—O2	174.7 (3)	C13-C14-C15-C16	-1.9 (6)
C3—C4—C5—C6	168.1 (3)	C13—C14—C15—Br2	174.9 (3)
C18—C4—C5—C6	-65.5 (4)	C14—C15—C16—C17	1.0 (6)
O2—C5—C6—C7	-134.4 (3)	Br2-C15-C16-C17	-175.8 (3)
C4—C5—C6—C7	103.0 (4)	C13—C12—C17—C16	-2.8 (5)
O2—C5—C6—C11	47.0 (4)	C1—C12—C17—C16	174.2 (3)
C4—C5—C6—C11	-75.7 (4)	C15-C16-C17-C12	1.4 (6)
С11—С6—С7—С8	-1.7 (6)	C12—C1—O2—C5	-173.8 (3)
C5—C6—C7—C8	179.7 (3)	C2—C1—O2—C5	64.2 (3)
C6—C7—C8—C9	0.7 (6)	C6—C5—O2—C1	177.7 (3)
C7—C8—C9—C10	1.0 (6)	C4—C5—O2—C1	-59.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A		
C4—H4···Cg ⁱ	0.98	2.77	3.687	156		
C14—H14…O1 ⁱⁱ	0.93	2.68	3.403 (5)	136		
Symmetry codes: (i) $-x+2$, $y+1/2$, $-z+3/2$; (ii) $x+1/2$, y , $-z+3/2$.						

Fig. 3

